Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 12 Μαΐου 2017

Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging

S03010082.gif

Publication date: Available online 11 May 2017
Source:Progress in Neurobiology
Author(s): Ben Loos, Daniel J. Klionsky, Esther Wong
Accumulation of toxic protein aggregates in the nerve cells is a hallmark of neuronal diseases and brain aging. Mechanisms to enhance neuronal surveillance to improve neuronal proteostasis have a direct impact on promoting neuronal health and forestalling age-related decline in brain function. Autophagy is a lysosomal degradative pathway pivotal for neuronal protein quality control. Different types of autophagic mechanisms participate in protein handling in neurons. Macroautophagy targets misfolded and aggregated proteins in autophagic vesicles to the lysosomes for destruction, while chaperone-mediated autophagy (CMA) degrades specific soluble cytosolic proteins delivered to the lysosomes by chaperones. Dysfunctions in macroautophagy and CMA contribute to proteo- and neuro-toxicity associated with neurodegeneration and aging. Thus, augmenting or preserving both autophagic mechanisms pose significant benefits in delaying physiological and pathological neuronal demises. Recently, life-style interventions that modulate metabolite ketone bodies, energy intake by caloric restriction and energy expenditure by exercise have shown to enhance both autophagy and brain health. However, to what extent these interventions affect neuronal autophagy to promote brain fitness remains largely unclear. Here, we review the functional connections of how macroautophagy and CMA are affected by ketone bodies, caloric restriction and exercise in the context of neurodegeneration. A concomitant assessment of yeast Saccharomyces cerevisiae is performed to reveal the conserved nature of such autophagic responses to substrate perturbations. In doing so, we provide novel insights and integrated evidence for a potential adjuvant therapeutic strategy to intervene in the neuronal decline in neurodegenerative diseases by controlling both macroautophagy and CMA fluxes favorably.



http://ift.tt/2pF8Eol

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου