Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 30 Νοεμβρίου 2016

Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds.

Publication date: Available online 30 November 2016
Source:Acta Biomaterialia
Author(s): Daniel V. Bax, Natalia Davidenko, Donald Gullberg, Samir W. Hamaia, Richard W. Farndale, Serena M. Best, Ruth E. Cameron
Research on the development of collagen constructs is extremely important in the field of tissue engineering. Collagen scaffolds for numerous tissue engineering applications are frequently crosslinked with 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride (EDC) in the presence of N-hydroxy-succinimide (NHS). Despite producing scaffolds with good biocompatibility and low cellular toxicity the influence of EDC/NHS crosslinking on the cell interactive properties of collagen has been overlooked. Here we have extensively studied the interaction of model cell lines with collagen I-based materials after crosslinking with different ratios of EDC in relation to the number of carboxylic acid residues on collagen. Divalent cation-dependent cell adhesion, via integrins α1β1, α2β1, α10β1 and α11β1, were sensitive to EDC crosslinking. With increasing EDC concentration, this was replaced with cation-independent adhesion. These results were replicated using purified recombinant I domains derived from integrin α1 and α2 subunits. Integrin α2β1-mediated cell spreading, apoptosis and proliferation were all heavily influenced by EDC crosslinking of collagen. Data from this rigorous study provides an exciting new insight that EDC/NHS crosslinking is utilising the same carboxylic side chain chemistry that is vital for native-like integrin-mediated cell interactions. Due to the ubiquitous usage of EDC/NHS crosslinked collagen for biomaterials fabrication this data is essential to have a full understanding in order to ensure optimized collagen-based material performance.

Graphical abstract

image


http://ift.tt/2fDMnra

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου