Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 21 Δεκεμβρίου 2016

Mimicking the Tumor Microenvironment to Regulate Macrophage Phenotype and Assessing Chemotherapeutic Efficacy in Embedded Cancer Cell/Macrophage Spheroid Models

Publication date: Available online 21 December 2016
Source:Acta Biomaterialia
Author(s): Kristie M. Tevis, Ryan J. Cecchi, Yolonda L. Colson, Mark W. Grinstaff
Tumor associated macrophages (TAMs) are critical stromal components intimately involved with the progression, invasion, and metastasis of cancer cells. To address the need for an in vitro system that mimics the clinical observations of TAM localizations and subsequent functional performance, a cancer cell/macrophage spheroid model is described. The central component of the model is a triple negative breast cancer spheroid embedded in a three-dimensional collagen gel. Macrophages are incorporated in two different ways. The first is a heterospheroid, a spheroid containing both tumor cells and macrophages. The heterospheroid mimics the population of TAMs infiltrated into the tumor mass, thus being exposed to hypoxia and metabolic gradients. In the second model, macrophages are diffusely seeded in the collagen surrounding the spheroid, thus modeling TAMs in the cancer stroma. The inclusion of macrophages as a heterospheroid changes the metabolic profile, indicative of synergistic growth. In contrast, macrophages diffusely seeded in the collagen bear the same profile regardless of the presence of a tumor cell spheroid. The macrophages in the heterospheroid secrete EGF, a cytokine critical to tumor/macrophage co-migration, and an EGF inhibitor decreases the metabolic activity of the heterospheroid, which is not observed in the other systems. The increased secretion of IL-10 indicates that the heterospheroid macrophages follow an M2/TAM differentiation pathway. Lastly, the heterospheroid exhibits resistance to paclitaxel. In summary, the collagen embedded heterospheroid model promotes TAM-like characteristics, and will be of utility in cancer biology and drug discovery.Statement of SignificanceTwo in vitro collagen-embedded multicellular spheroid models are described that mimic the clinical observations of macrophage localization within a tumor. Incorporation of macrophages within a breast cancer spheroid emphasizes cell-cell interactions with subsequent differentiation toward a tumor-promoting TAM phenotype. In contrast, macrophages seeded around the tumor spheroid display decreased interaction with cancer cells and no indication of a TAM phenotype. Finally, the presence of macrophages in the heterospheroid increases resistance to paclitaxel. This study demonstrates that cell-cell interactions and 3D collagen matrix direct macrophage activity, and, thus, highlights the important role the local environment itself plays in macrophage behavior.

Graphical abstract

image


http://ift.tt/2hbLt4l

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου