Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Κυριακή 11 Δεκεμβρίου 2016

Visualized detection of single-base difference in multiplexed loop-mediated isothermal amplification amplicons by invasive reaction coupled with oligonucleotide probe-modified gold nanoparticles

S09565663.gif

Publication date: 15 April 2017
Source:Biosensors and Bioelectronics, Volume 90
Author(s): Yan Lu, Xueping Ma, Jianping Wang, Nan Sheng, Tianhui Dong, Qinxin Song, Jianzhong Rui, Bingjie Zou, Guohua Zhou
Loop-mediated isothermal amplification (LAMP) is a well-developed DNA amplification method with an ultra-high sensitivity, but it is difficult to recognize a single-base difference (like genotyping) in target-specific amplicons by conventional detection ways, such as the intercalation of dyes into dsDNA amplicons or the increase of solution turbidity along with the polymerization process. To allow genotyping based on LAMP suitable for POCT (point-of-care testing) or on-site testing, here we proposed a highly specific and cost-effective method for detecting a single-base difference in LAMP amplicons. The method includes three key steps, sequence amplifier to amplify multiple fragments containing the single nucleotide polymorphisms (SNPs) of interest, allele identifier to recognize a targeted base in the amplicons by invasive reaction, and signal generator to yield signals by hybridization-induced assembly of oligonucleotide probe-modified gold nanoparticles. Because the allele identifier is sensitive to one base difference, it is possible to use multiplexed LAMP (mLAMP) to generate amplicon mixtures for multiple SNP typing. Genotyping of 3 different SNPs (CYP2C19*2, CYP2C19*3 and MDR1-C3435T) for guiding the dosage of clopidogrel is successfully carried out in a 3-plex LAMP on real clinical samples. As our method relies on the naked-eye detection and constant-temperature reaction, no expensive instrument is required for both target amplification and sequence identification, thus much suitable for inexpensive gene-guided personalized medicine in source-limited regions.



http://ift.tt/2hij5LU

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου