Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 12 Απριλίου 2017

Peptide valency plays an important role in the activity of a synthetic fibrin-crosslinking polymer

Publication date: July 2017
Source:Biomaterials, Volume 132
Author(s): Robert J. Lamm, Esther B. Lim, Katie M. Weigandt, Lilo D. Pozzo, Nathan J. White, Suzie H. Pun
Therapeutic polymers have the potential to improve the standard of care for hemorrhage, or uncontrolled bleeding, as synthetic hemostats. PolySTAT, a fibrin-crosslinking peptide-polymer conjugate, has the capacity to rescue fibrin clot formation and improve survival in a model of acute traumatic bleeding. PolySTAT consists of a synthetic polymer backbone to which targeting fibrin-binding peptides are linked. For translation of PolySTAT, the optimal valency of peptides must be determined. Grafting of fibrin-binding peptides to the poly(hydroxyethyl methacrylate)-based backbone was controlled to produce peptide valencies ranging from 0 to 10 peptides per polymer. PolySTATs with valencies of ≈4 or greater resulted in increased clot firmness, kinetics, and decreased breakdown as measured by thromboelastometry. A valency of ≈4 increased clot firmness 57% and decreased clot breakdown 69% compared to phosphate-buffered saline. This trend was characterized by neutron scattering, which probed the structure of clots formed in the presence of PolySTAT. Finally, PolySTAT with valencies of 4 (100% survival; p = 0.013) and 8 (80% survival; p = 0.063) improved survival compared to an albumin control in a femoral artery injury model (20% survival). This work demonstrates tunability of hemostatic polymers and the ability of in vitro assays to predict in vivo efficacy.

Graphical abstract

image


http://ift.tt/2pblnA5

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου