Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 7 Ιουνίου 2017

Effect of exposure time, particle size and uptake pathways in immune cell lysosomal cytotoxicity of mussels exposed to silver nanoparticles.

Effect of exposure time, particle size and uptake pathways in immune cell lysosomal cytotoxicity of mussels exposed to silver nanoparticles.

Drug Chem Toxicol. 2017 Jun 06;:1-6

Authors: Bouallegui Y, Ben Younes R, Turki F, Mezni A, Oueslati R

Abstract
Cytotoxicity evaluation of hemocytes (lysosomal membrane stability [LMS] assay) from Mytilus galloprovincialis Lamarck, exposed to a sublethal dose (100 μg/L) of two size of silver nanoparticles (AgNPs: <50 nm and <100 nm) - prior to and after inhibition of potential uptake pathways (i.e., clathrin- and caveolae-mediated endocytosis) within different times of exposure (3, 6, 12 h) - showed that there was a significant cytotoxic effect on immune cells of mussels exposed for different times to either AgNP size (p < 0.01); the greater effect was with the smaller size. However, hemocytes seemed more sensitive to the larger AgNP after clathrin-mediated endocytosis was blocked (p < 0.01); this was not so with inhibition of caveolae-mediated endocytosis. Dimethyl-sulfoxide (DMSO) did not impart a carrier-mediated effect despite an enhanced cytotoxicity when DMSO was present with AgNP. From these results, it is concluded that the immunotoxicity of AgNP in mussels was size-dependent as well as length of exposure-dependent. It was also clear that nanoparticles (NP) internalization mechanisms were a major factor underlying any toxicity.

PMID: 28583008 [PubMed - as supplied by publisher]



http://ift.tt/2sCOa2a

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου