Abstract
Magnetite (Fe3O4) nanoparticle-encapsulated mesoporous carbon nanocomposite was fabricated from Fe-based metal–organic framework (MOF) (MIL-102) through carbonization. It was found that Fe-based MOF (MIL-102) is a potential precursor for the fabrication of hexagonal mesoporous carbon nanodisk functionalized with Fe3O4 nanoparticles. The obtained nanocomposite was characterized by XRD, FT-IR, N2 adsorption and desorption, FE-SEM and HRTEM techniques. As a Fenton-like solid catalyst for phenol degradation, Fe3O4 nanoparticle-encapsulated mesoporous carbon showed greater catalytic activity for the production of hydroxyl radical from the decomposition of H2O2 and it accomplished 100% phenol and 82% total organic carbon (TOC) conversion, within 120 min of reaction. This enhanced catalytic performance was due to confined access for the pollutant to the iron oxide nanoparticles provided by mesopores in carbon shell. Bare Fe3O4 nanodisk shows poor catalytic performance in the degradation of phenol, and it obviously reveals the significance of the mesoporous carbon support for iron oxide nanoparticles.
http://ift.tt/2ucPWv9
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου