Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 26 Ιουλίου 2017

Ketamine changes the local resting-state functional properties of anesthetized-monkey brain

S0730725X.gif

Publication date: Available online 26 July 2017
Source:Magnetic Resonance Imaging
Author(s): Jia-Sheng Rao, Zuxiang Liu, Can Zhao, Rui-Han Wei, Wen Zhao, Peng-Yu Tian, Xia Zhou, Zhao-Yang Yang, Xiao-Guang Li
ObjectiveKetamine is a well-known anesthetic. 'Recreational' use of ketamine always induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties.MethodsWe used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions.ResultsResults showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (p<0.05).ConclusionsThese findings demonstrated that single-dose ketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status.



http://ift.tt/2vKokLr

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου