Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 9 Αυγούστου 2017

Current developments and applications of microfluidic technology toward clinical translation of nanomedicines

Publication date: Available online 8 August 2017
Source:Advanced Drug Delivery Reviews
Author(s): Dongfei Liu, Hongbo Zhang, Flavia Fontana, Jouni T. Hirvonen, Hélder A. Santos
Nanoparticulate drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the translation of nanoparticulate drug delivery systems from academic research to the industrial and clinical practice has been slow. This slow translation can be ascribed to the high batch-to-batch variations and insufficient production rate of the conventional methods, and the lack of technologies for rapid screening of nanoparticulate drug delivery systems with high correlation to the in vivo tests. These issues can be addressed by the microfluidic technologies. For example, microfluidics can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but also create 3D environments with continuous flow to mimic the physiological and/or pathological processes. This review provides an overview of the microfluidic devices developed to prepare nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and theranostic nanoparticles. We also highlight the recent advances of microfluidic systems in fabricating the increasingly realistic models of the in vivo milieu for rapid screening of nanoparticles. Overall, the microfluidic technologies offer a promise approach to accelerate the clinical translation of nanoparticulate drug delivery systems.

Graphical abstract

image


http://ift.tt/2vmiPmt

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου