Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Πέμπτη 21 Σεπτεμβρίου 2017

A tectorin-based matrix and planar-cell-polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane [RESEARCH ARTICLE]

Richard J. Goodyear, Xiaowei Lu, Michael R. Deans, and Guy P. Richardson

The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of an epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically-directed slant - a feature considered critical for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia, or the planar-cell-polarity genes Vangl2 and Ptk7. In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril-number rapidly increases, become co-aligned and correctly oriented. Epithelial-width measurements and data from Kif3acKO mice suggest, respectively, radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation, but evidence from tectorin-knockout mice indicates confinement is important. PRICKLE2 distribution reveals the planar-cell-polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically-directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.



http://ift.tt/2xscjgF

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου