Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 14 Οκτωβρίου 2017

Crack monitoring and failure investigation on inkjet printed sandwich structures under quasi-static indentation test

Publication date: 5 January 2018
Source:Materials & Design, Volume 137
Author(s): Vishwesh Dikshit, Arun Prasanth Nagalingam, Yee Ling Yap, Swee Leong Sing, Wai Yee Yeong, Jun Wei
In this research contribution, effort is taken to monitor the crack initiation and crack propagation of three-dimensional (3D) printed corrugated sandwich structures using acoustic emission technique. Vertical pillars were introduced in between the existing sinusoidal wave-like corrugations to improve the load bearing capacity of these structures. The vertical pillared corrugated structures were 3D printed with single and multi-material combinations in the facesheet and tested for their indentation resistance. To monitor the exact invisible crack initiation and crack propagation in the 3D printed corrugated structures, a highly-sensitive acoustic emission (AE) testing method was introduced. The resulting AE data points during testing illustrated a cluster of low amplitude data points from 40 to 65dB indicating invisible crack initiations. High amplitude points up to 95dB indicated visible cracks propagating until the end of specimen failure. Prevalent failure mechanism for single material (type A) specimens was found to be shear cracking of facesheets with micro steps and failure mechanism of multimaterial (type B) specimens were found to be delamination and shear cracking of multimaterial layers. Load bearing capacity was maximum at 2.14±0.3kN for type A specimens under a flat indenter with a displacement of 2.12±0.4mm.

Graphical abstract

image


http://ift.tt/2hGImjP

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου