Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 21 Μαρτίου 2018

One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon

Publication date: 30 June 2018
Source:Biosensors and Bioelectronics, Volume 109
Author(s): Mohammed Y. Emran, Mohamed A. Shenashen, Hiromi Morita, Sherif A. El-Safty
A metal-free electrode using heteroatom-doped microporous carbon was fabricated for the ultrasensitive monitoring of mono-bioactive molecules and the selective signaling of dopamine (DA) secreted by living cells. The constructed electrode based on sulfur-doped microporous carbon (S-MC) shows a high surface area, a spherical construction, numerous carbon chain defects, and microporous structures, which are the key factors of the interactive signaling transducer, fast response, and active interfacial surfaces. The intrinsic features of S-MC with different %S-doping (S-MC-1, and S-MC-2) through the sp2-carbon chain create abundant catalytic active sites, facilitate molecular diffusion through the microporous structure, promote strong binding with the targeted molecules, and induce interactions at electrolyte–electrode interfaces. The S-MC-1 provides selective signaling in a tertiary mixture of DA, ascorbic acid (AA), and uric acid (UA) with a high sensitivity and a wide linear range of 0.01–5, 10–4000, and 1–2000 µM, respectively. The detection limits were set at 3 nM, 1.26 µM, and 0.23 µM for DA, AA, and UA respectively. The S-MC-1 demonstrated a selective screening of DA released from PC12 cells under a K+ ion- stimulator with high sensitivity and promoted high biocompatibility, low cytotoxicity, high stability, and reliable reproducibility (%RSD ranged from 1 to 2.7). Our findings indicated that the S-MC-1 can be utilized as an in-vitro model for simultaneously monitoring extracellular-DA secreted from living cells and sensing mono-bioactive molecules in biological samples.



http://ift.tt/2uaAD6U

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου