Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 5 Ιουλίου 2017

Photodynamic process induced by chloro-aluminum phthalocyanine nanoemulsion in glioblastoma

Publication date: September 2017
Source:Photodiagnosis and Photodynamic Therapy, Volume 19
Author(s): Andrielle Castilho-Fernandes, Tácila G. Lopes, Fernando L. Primo, Marcelo R. Pinto, Antonio C. Tedesco
BackgroundGlioblastoma multiforme (GBM) is a tumor characterized by rapid cell proliferation and migration. GBM constitutes the most aggressive and deadly type of brain tumor and is classified into several subtypes that show high resistance to conventional therapies. There are currently no curative treatments for malignant glioma despite the numerous advances in surgical techniques, radiotherapy, and chemotherapy. Therefore, alternative approaches are required to improve GBM treatment.MethodsOur study proposes the use of photodynamic therapy (PDT) for GBM treatment, which uses chloro-aluminum phthalocyanine (AlClPc) encapsulated in a new drug delivery system (DDS) and designed as a nanoemulsion (AlClPc/NE). The optimal dark non-cytotoxic AlClPc/NE concentration for the U87 MG glioma cell model and the most suitable laser light intensity for irradiation were determined. Experimental U87 MG cancer cells were analyzed via MTT cell viability assay. Cellular localization of AlClPc, morphological changes, and cell death via the necrotic and apoptotic pathways were also evaluated.ResultsAlClPc remained in the cytoplasmic region at 24h after administration. Additionally, treatment with 1.0μmol/L AlClPc under light irradiation at doses lower than 140mJ/cm resulted in morphological changes with 50±6% cell death (p<0.05). Moreover, 20±2% of U87 MG cells underwent cell death via the necrotic pathway. Measurement of Caspase-9 and -3 activities also suggested that cells underwent apoptosis. Taken together, these results indicate that AlClPc/NE-PDT can be used in the treatment of glioblastoma by inducing necrotic and apoptotic cell death.ConclusionsOur findings suggest that AlClPc/NE-PDT induces cell death in U87 MG cells in a dose-dependent manner and could thus serve as an effective adjuvant treatment for malignant glioma. AlClPc/NE-PDT utilizes a low dose of visible light and can be used in combination with other classic GBM treatment approaches, such as a combination of chemotherapy and surgery.

Graphical abstract

image


http://ift.tt/2tQ1PqD

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου