Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator in which individual neurons fire sparsely and stochastically. All ING mechanisms, including the one proposed herein, rely on alternating waves of inhibition and windows of opportunity for spiking. The coupled oscillator model implemented with Wang–Buzsáki model neurons is not sufficiently robust to heterogeneity in excitatory drive, and therefore intrinsic frequency, to account for in vitro models of ING. Similarly, in a tightly synchronized regime, the stochastic population oscillator model is often characterized by sparse firing, whereas interneurons both in vivo and in vitro do not fire sparsely during gamma, but rather on average every other cycle. We substituted so-called resonator neural models, which exhibit class 2 excitability and postinhibitory rebound (PIR), for the integrators that are typically used. This results in much greater robustness to heterogeneity that actually increases as the average participation in spikes per cycle approximates physiological levels. Moreover, dynamic clamp experiments that show autapse-induced firing in entorhinal cortical interneurons support the idea that PIR can serve as a network gamma mechanism. Furthermore, parvalbumin-positive (PV+) cells were much more likely to display both PIR and autapse-induced firing than GAD2+ cells, supporting the view that PV+ fast-firing basket cells are more likely to exhibit class 2 excitability than other types of inhibitory interneurons.
SIGNIFICANCE STATEMENT Gamma oscillations are believed to play a critical role in information processing, encoding, and retrieval. Networks of inhibitory interneurons are thought to be essential for these oscillations. We show that one class of interneurons with an abrupt onset of firing at a threshold frequency may allow more robust synchronization in the presence of noise and heterogeneity. The mechanism for this robustness depends on the intrinsic resonance at this threshold frequency. Moreover, we show experimentally the feasibility of the proposed mechanism and suggest a way to distinguish between this mechanism and another proposed mechanism: that of a stochastic population oscillator independent of the dynamics of individual neurons.
from #Neuroscience via alexandrossfakianakis on Inoreader http://ift.tt/1LzXvsk
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via paythelady61 on Inoreader http://ift.tt/1LA5FRw
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου