Characterizing the errors in satellite-based precipitation estimation products is crucial for understanding their effects in hydrological applications. Six precipitation products derived from three algorithms are comprehensively evaluated against gauge data over mainland China from December 2006 to November 2010. These products include three satellite-only estimates: the Global Satellite Mapping of Precipitation Microwave-IR Combined Product (GSMaP_MVK), the Climate Prediction Center (CPC) MORPHing (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), as well as their gauge-corrected counterparts: the GSMaP Gauge-calibrated Product (GSMaP_Gauge), bias-corrected CMORPH (CMORPH_CRT), and PERSIANN Climate Data Record (PERSIANN-CDR). Overall, the bias-correction procedures largely reduce various errors for the three groups of satellite-based precipitation products. GSMaP_Gauge produces better fractional coverage with the highest correlation (0.95) and the lowest RMSE (0.53 mm/day) but also high RB (15.77%). In general, CMORPH_CRT amounts are closer to the gauge reference. CMORPH shows better performance than GSMaP_MVK and PERSIANN with the highest CC (0.82) and the lowest RMSE (0.93 mm/day), but also presents a relatively high RB (−19.60%). In winter, all six satellite precipitation estimates have comparatively poor capability, with the IR-based PERSIANN_CDR exhibiting the closest performance to the gauge reference. Both satellite-only and gauge-corrected satellite products show poor capability in detecting occurrence of precipitation with a low POD (<50%) and CSI (<35%) and a high FAR (>40%).
from #Medicine via ola Kala on Inoreader http://ift.tt/1RSUzzm
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1JLgwIM
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου