Indirect composites have been undergoing an impressive evolution over the last few years. Specifically, recent developments in computer-aided design–computer-aided manufacturing (CAD-CAM) blocks have been associated with new polymerization modes, innovative microstructures, and different compositions. All these recent breakthroughs have introduced important gaps among the properties of the different materials. This critical state-of-the-art review analyzes the strengths and weaknesses of the different varieties of CAD-CAM composite materials, especially as compared with direct and artisanal indirect composites. Indeed, new polymerization modes used for CAD-CAM blocks—especially high temperature (HT) and, most of all, high temperature–high pressure (HT-HP)—are shown to significantly increase the degree of conversion in comparison with light-cured composites. Industrial processes also allow for the augmentation of the filler content and for the realization of more homogeneous structures with fewer flaws. In addition, due to their increased degree of conversion and their different monomer composition, some CAD-CAM blocks are more advantageous in terms of toxicity and monomer release. Finally, materials with a polymer-infiltrated ceramic network (PICN) microstructure exhibit higher flexural strength and a more favorable elasticity modulus than materials with a dispersed filler microstructure. Consequently, some high-performance composite CAD-CAM blocks—particularly experimental PICNs—can now rival glass-ceramics, such as lithium-disilicate glass-ceramics, for use as bonded partial restorations and crowns on natural teeth and implants. Being able to be manufactured in very low thicknesses, they offer the possibility of developing innovative minimally invasive treatment strategies, such as "no prep" treatment of worn dentition. Current issues are related to the study of bonding and wear properties of the different varieties of CAD-CAM composites. There is also a crucial need to conduct clinical studies. Last, manufacturers should provide more complete information regarding their product polymerization process, microstructure, and composition, which significantly influence CAD-CAM material properties.
from #Dental via xlomafota13 on Inoreader http://ift.tt/1SvrETr
via IFTTT Medicine by Alexandros G.Sfakianakis,Anapafseos 5 Agios Nikolaos,Crete 72100,Greece,tel :00302841026182 & 00306932607174
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1VC5AHO
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου