Abstract
Three-dimensional (3-D) cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell–matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell–matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed.
from Biomedical Engineering via xlomafota13 on Inoreader http://ift.tt/1T0zDor
via IFTTT
from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1TOpLR3
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου