Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Κυριακή 12 Ιουνίου 2016

Limited role for transforming growth factor-β pathway activation-mediated escape from VEGF inhibition in murine glioma models.

Limited role for transforming growth factor-β pathway activation-mediated escape from VEGF inhibition in murine glioma models.:

Limited role for transforming growth factor-β pathway activation-mediated escape from VEGF inhibition in murine glioma models.

Neuro Oncol. 2016 Jun 10;

Authors: Mangani D, Weller M, Seyed Sadr E, Willscher E, Seystahl K, Reifenberger G, Tabatabai G, Binder H, Schneider H

Abstract
BACKGROUND: The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β pathways regulate key biological features of glioblastoma. Here we explore whether the TGF-β pathway, which promotes angiogenesis, invasiveness, and immunosuppression, acts as an escape pathway from VEGF inhibition.
METHODS: The role of the TGF-β pathway in escape from VEGF inhibition was assessed in vitro and in vivo and by gene expression profiling in syngeneic mouse glioma models.
RESULTS: We found that TGF-β is an upstream regulator of VEGF, whereas VEGF pathway activity does not alter the TGF-β pathway in vitro. In vivo, single-agent activity was observed for the VEGF antibody B20-4.1.1 in 3 and for the TGF-β receptor 1 antagonist LY2157299 in 2 of 4 models. Reduction of tumor volume and blood vessel density, but not induction of hypoxia, correlated with benefit from B20-4.1.1. Reduction of phosphorylated (p)SMAD2 by LY2157299 was seen in all models but did not predict survival. Resistance to B20 was associated with anti-angiogenesis escape pathway gene expression, whereas resistance to LY2157299 was associated with different immune response gene signatures in SMA-497 and GL-261 on transcriptomic profiling. The combination of B20 with LY2157299 was ineffective in SMA-497 but provided prolongation of survival in GL-261, associated with early suppression of pSMAD2 in tumor and host immune cells, prolonged suppression of angiogenesis, and delayed accumulation of tumor infiltrating microglia/macrophages.
CONCLUSIONS: Our study highlights the biological heterogeneity of murine glioma models and illustrates that cotargeting of the VEGF and TGF-β pathways might lead to improved tumor control only in subsets of glioblastoma.

PMID: 27286797 [PubMed - as supplied by publisher]

from glioma via o.lakala70 on Inoreader
via IFTTT



from #Med Blogs by Alexandros G.Sfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1YldFQY
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου