Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 27 Δεκεμβρίου 2016

Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease

Publication date: February 2017
Source:Neurobiology of Aging, Volume 50
Author(s): Patrick K.K. Yeung, Angela K.W. Lai, Hyo Jin Son, Xu Zhang, Onyou Hwang, Stephen S.M. Chung, Sookja K. Chung
Fungicide exposure causes degeneration of dopaminergic neurons and contributes to Parkinson's disease (PD). Benomyl inhibits enzymes responsible for detoxifying the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde. Aldose reductase (AR) is known as tetrahydrobiopterin (BH4) reductase that generates BH4, a cofactor for tyrosine hydroxylase (TH) involved in dopamine synthesis. AR also acts as an aldehyde reductase involved in detoxifying 3,4-dihydroxyphenylacetaldehyde. In PD patients, the level of AR is significantly lower in the cerebellum. To determine if AR deficiency contributes to PD, AR wild-type (AR+/+) and knockout (AR−/−) mice were administrated with 1-methyl-4-phenyl -1,2,3,6- tetrahydropyridine (MPTP). The MPTP-treated AR−/− mice showed more severe behavioral deficits and brain damage than that of AR+/+ mice. Contrary to expectation, under normal or MPTP-treated condition, AR−/− mice showed a significant elevation of BH4 and dopamine in the midbrain, suggesting that either AR does not contribute to BH4 production, or other BH4 synthetic pathways are induced. The AR−/− brain showed upregulation of peroxynitrite, inducible nitric oxide synthase and downregulation of antioxidant enzymes, Cu/Zn superoxide dismutase (SOD) and peroxiredoxin 2 (Prx2), which indicate an increase in oxidative stress. In line with the animal data, pretreating the SH-SY5Y cells with AR inhibitors (Fidarestat or Epalrestat) before MPP+ treatment, increased severe cell death and mitochondrial fragmentation with downregulation of SOD were observed when compared to the MPP+ treatment alone. Cycloxygenase 2 (COX2), which can lead to the oxidation of dopamine, was upregulated in AR−/− brains. Autophagic proteins, beclin-1 and LC3B were also downregulated. The loss of dopaminergic neurons was associated with activation of p-ERK1/2. These findings suggest that AR plays an important role in protecting dopaminergic neuron against neurotoxic metabolites in PD.



http://ift.tt/2iBWHkp

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου