Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 17 Δεκεμβρίου 2016

Kallistatin suppresses cell proliferation, invasion, and promotes apoptosis in cervical cancer through blocking NF-κB signaling.

Kallistatin suppresses cell proliferation, invasion, and promotes apoptosis in cervical cancer through blocking NF-κB signaling.

Oncol Res. 2016 Nov 24;:

Authors: Wang T, Shi F, Wang J, Liu Z, Su J

Abstract
Kallistatin has been recognized as an endogenous angiogenesis inhibitor, and exerts pleiotropic effects in inhibiting tumor growth, migration, apoptosis and inflammation. The purpose of the present study was to investigate the potential role and mechanisms of kallistatin in cervical cancer. We demonstrated that kallistatin effectively inhibited cell proliferation and enhanced apoptosis in a dose-dependent manner. Additionally, kallistatin suppressed migration and invasion activity as well as markedly reduced the expression of matrix-degrading metalloproteinases, progelatinase (MMP-2), MMP-9 and urokinase-type PA (uPA). Meanwhile, kallistatin reversed epithelial-mesenchymal transition (EMT) and caused the upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and vimentin. Moreover, kallistatin led to a marked decrease in the expression of vascular endothelial growth factor (VEGF) and HIF-1α. In a xenograft mouse model, kallistatin treatment reduced tumor growth. Importantly, kallistatin strikingly impeded NF-κB activation by suppressing IκBα degradation and the level of phosphorylation of p65. Interestingly, similar to the kallistatin, treatment with PDTC (an inhibitor of NF-κB) also attenuated cell invasion and migration. Taken together, these findings suggest that kallistatin suppresses cervical cancer cell proliferation, migration, EMT and promotes cell apoptosis by blocking the NF-κB signaling pathway, suggesting that kallistatin may be a novel therapeutic target for cervical cancer treatment.

PMID: 27983915 [PubMed - as supplied by publisher]



http://ift.tt/2gVFfXu

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου