Publication date: 1 March 2017
Source:European Journal of Pharmaceutical Sciences, Volume 99
Author(s): Qinfu Zhao, Xiudan Wang, Yue Yan, Da Wang, Ying Zhang, Tongying Jiang, Siling Wang
In this study, we synthesized a kind of hollow mesoporous carbon (HMC) as near-infrared (NIR) nanomaterial and made a comparison between HMC and IR-820 commercially available in terms of heat generation properties and thermal stability exposed under NIR laser irradiation. The NIR-induced photothermal tests indicated that HMC had excellent heat generating capacity and remained stable after exposed to NIR laser irradiation for several times. On the contrary, the IR-820 was thermal unstable and degraded completely after exposed to NIR laser irradiation for only one time. The anticancer drug DOX was chosen as a model drug to evaluate the loading capacity and release properties of carboxylated HMC (HMC-COOH). The drug loading efficiency of HMC-COOH could reach to 39.7%. In vitro release results indicated that the release rate of DOX was markedly increased under NIR laser irradiation both in pH5.0 and pH7.4 PBS. Cell viability experiments indicated that HMC-COOH/DOX has a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This present research demonstrated that HMC could be employed as NIR-adsorbing agents as well as drug carriers to load lots of drug, realizing the synergistic treatment of chemotherapy and photothermal therapy.
Graphical abstract
http://ift.tt/2hDFYMI
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου