Abstract
This study aims at controlling of the cyanobacteria Oscillatoria simplicissima, those that produce neurotoxins and have negative impacts on the aquatic organisms, using biosynthesized metal nanoparticles (NPs). Silver-NPs (Ag-NPs) have been successfully biosynthesized using Nannochloropsis oculata and Tetraselmis tetrathele cultures. Also, Ag-NPs and iron oxide-NPs (Fe3O4-NPs) were synthesized by Halophila stipulacea aqueous extract. The structural composition of the different biosynthesized NPs was studied. The algae cultures and the extract were used as reductants of AgNO3, and brown colors due to Ag-NP biosynthesis were observed. Silver signals were recorded in their corresponding EDX spectra. FTIR analyses showed that proteins in N. oculata and T. tetrathele cultures reduced AgNO3, and aromatic compounds stabilized the biogenic Ag-NPs. H. stipulacea extract contains proteins and polyphenols that could be in charge for the reduction of silver and iron ions into nanoparticles and polysaccharides which stabilized the biosynthesized Ag-NPs and Fe3O4-NPs. The Ag-NPs biosynthesized by T. tetrathele cultures and H. stipulacea aqueous extract exerted outstanding negative impacts on O. simplicissima (optical density and total chlorophyll) and the Ag-NPs biosynthesized using N. oculata culture exerted the moderate performance. The study results suggest that the bioactive compounds present in the FTIR profiles of the Ag-NPs and or ionic silver may be the main contributors in their anti-algal effects. A trial to use the biosynthesized Fe3O4-NPs using H. stipulacea aqueous extract to separate Ag-NPs was successfully carried out. Since the synthesis and applications of nanomaterials is a hot subject of research, the study outcomes not only provide a green approach for the synthesis of metal-NPs but also open the way for more nanoparticle applications.
http://ift.tt/2jDrZqb
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου