Publication date: 5 April 2017
Source:Materials & Design, Volume 119
Author(s): Jie Li, Ming C. Leu, Rahul Panat, Jonghyun Park
New hybrid 3D structure electrodes with a high aspect ratio are fabricated through extrusion-based additive manufacturing to achieve high mass loading. This new 3D printed battery exhibits both high areal and specific capacity, thus overcoming the trade-off between the two of the conventional laminated batteries. This excellent battery performance is achieved by introducing a hybrid 3D structure that utilizes the benefits of the existing laminated structure and three-dimensional interdigitated structure. In addition, conventional battery paste components are used optimally to fit the 3D printing process, which eliminates the need for a complicated solvent preparation process required for a typical 3D printing process for battery applications. Using the CR2032 coin cell, the general assembly problem that occurs at the 3D structured electrodes is solved, which means that the proposed hybrid 3D structure can easily be added to the existing lamination structure. This innovative design and fabrication process demonstrates the high areal energy and power density, which is a critical requirement for energy storage systems in transportation and stationary applications.
Graphical abstract
http://ift.tt/2k9Tzfe
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου