Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Δευτέρα 20 Φεβρουαρίου 2017

A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification

S09565663.gif

Publication date: 15 June 2017
Source:Biosensors and Bioelectronics, Volume 92
Author(s): Huanhuan Li, Quansheng Chen, Md. Mehedi Hassan, Xiaoxing Chen, Qin Ouyang, Zhiming Guo, Jiewen Zhao
Surface-enhanced Raman scattering (SERS) biosensors have promising potential in the field of antibiotics detection because of their ultrahigh detection sensitivity. This paper reports a rapid and sensitive SERS-based magnetic nanospheres-targeting strategy for sensing tetracycline (TTC) using aptamer-conjugated magnetite colloid nanocrystal clusters (MCNCs)-polymethacrylic acid (PMAA) magnetic nanospheres (MNs) as the recognition and the Au/PATP/SiO2 (APS) as the labels. Initially, MNs were fabricated and conjugated with the aptamers through condensation reaction. MNs possessed high saturation magnetization (Ms) value of 71.5emu/g and excellent biocompatibility, which facilitated the rapid and easy magnetic separation. Then, complementary DNA (cDNA) were loaded on the APS nanocarrier to produce a large amplification factor of Raman signals. The MNs-targeting aptasensor was thus fabricated by immobilizing the APS to the MNs' surfaces via the hybrid reaction between cDNA and aptamers. Sequel, TTC bound successfully to the aptamer upon its addition with the subsequent release of some cDNA-APS into the bulk solution. Under magnet attraction, the nanospheres were deposited together. Consequently, a display of strong SERS signals by supernatants of the resulting mixtures with increasing TTC concentrations was observed. The proposed aptasensor showed excellent performances for TTC detection along with wide linear range of 0.001–100ng/mL, low detection limit 0.001ng/mL, high sensitivity, and good selectivity to the general coexisted interferences.



http://ift.tt/2kT70NN

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου