Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 28 Φεβρουαρίου 2017

Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions.

Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions.

Hum Brain Mapp. 2017 Feb 27;:

Authors: Gillespie NA, Neale MC, Hagler DJ, Eyler LT, Fennema-Notestine C, Franz CE, Lyons MJ, McEvoy LK, Dale AM, Panizzon MS, Kremen WS

Abstract
Increased mean diffusivity (MD) is hypothesized to reflect tissue degeneration and may provide subtle indicators of neuropathology as well as age-related brain changes in the absence of volumetric differences. Our aim was to determine the degree to which genetic and environmental variation in subcortical MD is distinct from variation in subcortical volume. Data were derived from a sample of 387 male twins (83 MZ twin pairs, 55 DZ twin pairs, and 111 incomplete twin pairs) who were MRI scanned as part of the Vietnam Era Twin Study of Aging. Quantitative estimates of MD and volume for 7 subcortical regions were obtained: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. After adjusting for covariates, bivariate twin models were fitted to estimate the size and significance of phenotypic, genotypic, and environmental correlations between MD and volume at each subcortical region. With the exception of the amygdala, familial aggregation in MD was entirely explained by additive genetic factors across all subcortical regions with estimates ranging from 46 to 84%. Based on bivariate twin modeling, variation in subcortical MD appears to be both genetically and environmentally unrelated to individual differences in subcortical volume. Therefore, subcortical MD may be an alternative biomarker of brain morphology for complex traits worthy of future investigation. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

PMID: 28240386 [PubMed - as supplied by publisher]



http://ift.tt/2mGkyxp

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου