Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 24 Φεβρουαρίου 2017

Spectral Ripple Discrimination in Normal-Hearing Infants

imageObjectives: Spectral resolution is a correlate of open-set speech understanding in postlingually deaf adults and prelingually deaf children who use cochlear implants (CIs). To apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in normal-hearing children. In this study, spectral ripple discrimination (SRD) was used to measure listeners' sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. Design: SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90° shift in phase of the sinusoidally-modulated amplitude spectrum. A 2 × 3 between-subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough "depth" (10, 13, and 20 dB) on SRD in normal-hearing listeners (experiment 1). In experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). Results: In experiment 1, there was a significant interaction between age and ripple depth. The infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in experiment 2 infant performance was significantly poorer than adults at 20 dB depth suggesting that variability of infants' use of within-channel intensity cues, rather than better frequency resolution, explained the results of experiment 1. In experiment 3, age effects were seen with both groups of infants showing poorer SRD than adults but, unlike experiment 1, no significant interaction between age and depth was seen. Conclusions: Measurement of SRD thresholds in individual 3 to 7-month-old infants is feasible. Performance of normal-hearing infants on SRD may be limited by across-channel intensity resolution despite mature frequency resolution. These findings have significant implications for design and stimulus choice for applying SRD for testing infants with CIs. The high degree of variability in infant SRD can be somewhat reduced by obscuring within-channel cues.

http://ift.tt/2mrU7LQ

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου