Objectives/Hypothesis
Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study.
Study Design
Animal study.
Design
Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks.
Results
At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups—KTP alone, KTP + chitosan, and microsuture + chitosan—were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively.
Conclusions
In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery.
Level of Evidence
NA Laryngoscope, 2017
http://ift.tt/2npd5UI
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου