Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 1 Απριλίου 2017

Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles

Publication date: Available online 1 April 2017
Source:Acta Biomaterialia
Author(s): Min Sil Kang, Rajendra K. Singh, Tae-Hyun Kim, Joong-Hyun Kim, Kapil D. Patel, Hae-Won Kim
Multifunctional nanocarrier-based theranostics is currently considered to solve some key unmet challenges in cancer treatment. Here we report a nanocarrier platform, named carbon dot (CD) created mesoporous hollow organosilica (C-hMOS) nanoparticles, to deliver anticancer drug and to enable optical imaging. The hollow structure was formed by the removal of a nanorod core template, and at the same time, the fluorescent signal was endowed from the heat-treated organosilica network. Thanks to the hollow and mesoporous structure, the C-hMOS effectively loaded doxorubicin (DOX) for cancer chemotherapy. The DOX was released from C-hMOS highly sustainably (over 12 days) and pH-dependently (pH 5.0 > pH 7.4). The DOX-loading C-hMOS internalized cancer cells efficiently (> 90%), and induced cellular apoptosis including the expression of caspase-3. The treatment of C-hMOS to cancer cells enabled multi-color visualization in vitro, suggesting the possibility of cell tracing. Moreover, when injected intratumorally in mice, the C-hMOS exhibited strong optical signals in vivo along with a high optical stability (over a week). The injected C-hMOS were distributed only a fraction in liver but not in heart, lung, spleen or kidney and displayed good biocompatibility. The DOX-delivering C-hMOS significantly suppressed the in vivo tumor growth associated with apoptotic functions. Taken together, the developed C-hMOS nanoparticles can be a promising nanoplatform for drug delivery and in vivo imaging in cancer treatment.Significance of workMultifunctional nanoparticles that combine chemotherapeutic ability with imaging modality comprise promising platform for cancer theranostics. Here we developed a novel theranostic nanoparticle, i.e., carbon-dot created mesoporous hollow silica nanoparticle, to offer unique merit for this purpose. The in vitro and in vivo findings to support this include: i) carbon dots with 1-2 nm size in situ generated discretely and uniformly within silica network, ii) hollow and mesoporous structure effective for loading of DOX at high content, iii) release behavior of DOX in a sustainable and pH-dependent manner, iv) chemotherapeutic efficacy in killing cancer cells and suppressing tumor growth through DOX delivery, and v) carbon dot induced multi-color fluorescence imaging within cells and tumor tissues. These collective multifaceted properties may facilitate the novel carbon dot nanocarriers to be a potential candidate for delivering anticancer drug and non-invasive imaging in cancer treatment.

Graphical abstract

image


http://ift.tt/2ov7TPA

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου