Abstract
Decabromodiphenyl ether (BDE209) is a typical soil contaminant released from e-waste recycling sites (EWRSs). Electrokinetics (EK) has been considered as an excellent treatment technology with a promising potential to effectively remove organic pollutants in soil. In this study, the treatment of BDE209-polluted soil by EK was explored. All the EK experiments were conducted under a constant voltage gradient (2 V cm−1) for 14 days. Deionized water (DI water), hydroxypropyl-β-cyclodextrin (HPCD), sodium dodecyl sulfate (SDS), and humic acid (HA) were applied as the processing fluid. The experimental results showed that all the solubilizers could effectively promote the mobility and transport of BDE209 in the soil via the electro-osmotic flow (EOF) or electromigration. The removal efficiencies achieved in S1 section were 24, 22, and 26% using HPCD, SDS, and HA as the processing fluid. However, the removal of BDE209 for the entire soil cell was not achieved until zero valence iron (ZVI) was inserted at the center of soil column as a permeable reactive barrier (PRB) or (ZVI-PRB), which enhanced the degradation of BDE209. As ZVI-PRB was installed in EK5 and EK6 experiments, the corresponding average removal efficiencies increased to 16 and 13%, respectively. Additionally, the degradation products of BDE209 analyzed by GC-MS suggested that debromination of BDE209 was the main potential degradation mechanism in the EK treatment in the presence of ZVI-PRB.
http://ift.tt/2ohFuim
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου