Publication date: 2 June 2017
Source:Polymer, Volume 118
Author(s): Wenzhe Song, Kevin Barber, Koon-Yang Lee
Macroporous polymers were prepared by mechanically frothing a bio-based epoxy resin and hardener mixture to first create air-in-resin liquid foams, followed by curing of these liquid foams. It was found that heating the air-in-resin liquid foams prior to their gelation decreased the viscosity of the resin mixture and increased the pressure of the air bubbles, leading to an isotropic expansion of the air bubbles. This resulted in an increase in the porosity of the resulting foam-templated macroporous polymers from 71% to 85%. Correspondingly, the compressive moduli (E) and strengths (σ) of the foam-templated macroporous polymers decreased from 231 MPa and 5.9 MPa, respectively, to 58 MPa and 1.9 MPa, respectively. This decrease is attributed to an increase in the porosity and pore throat frequency of the foam-templated macroporous polymers when heat was applied to the liquid foams. The deformation of the pores based on in situ SEM micro-compression test of the fabricated foam-templated macroporous polymers is also discussed.
Graphical abstract
http://ift.tt/2qy4zXv
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου