Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 26 Μαΐου 2017

High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites

S01429612.gif

Publication date: September 2017
Source:Biomaterials, Volume 138
Author(s): Hongwei Xu, Biao Dong, Shihan Xu, Sai Xu, Xueke Sun, Jiao Sun, Yudan Yang, Lin Xu, Xue Bai, Shuang Zhang, Ze Yin, Hongwei Song
Detection and isolation of circulating tumor cells (CTCs) play a pivotal role in the diagnosis and prognosis of cancer, while the high capture efficiency and purity of CTCs are difficult to achieve simultaneously among the various isolation methods. In this work, we designed an inverted microchip integrating silicon nanowires (SiNWs) and multifunctional magnetic nanocomposites (Fe3O4@C6/Ce6@silane, Coumarin 6 (C6), Chlorin e6 (Ce6)) for enhanced capture efficiency and purity of CTCs. The Fe3O4@C6/Ce6@silane conjugated with antibody can label the CTCs and pull them to the upside SiNWs capture surface by the upward magnetic field with high purity. This inverted structure was also featured with real-time detection and photodynamic therapy (PDT) of CTCs with the confocal laser scanning microscope (CLSM). The results indicate the important role of the composites labels and the magnetic field, which greatly improves the capture purity of the CTCs to 90%. Meanwhile, capture efficiency of CTCs achieve to 90.3% in culture medium and 82% in blood with 2 mL/h flow rate, respectively. Based on the structure of the device and composites, the captured CTCs could be directly inactivated by the in situ photodynamic therapy in the capture process which holds positive impact to block cancer spread.



http://ift.tt/2qo1yG4

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου