Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Πέμπτη 4 Μαΐου 2017

Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.

Related Articles

Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.

Acta Oncol. 2017 Jun;56(6):779-786

Authors: Dahle TJ, Rykkelid AM, Stokkevåg CH, Mairani A, Görgen A, Edin NJ, Rørvik E, Fjæra LF, Malinen E, Ytre-Hauge KS

Abstract
BACKGROUND: In order to determine the relative biological effectiveness (RBE) of protons with high accuracy, radiobiological experiments with detailed knowledge of the linear energy transfer (LET) are needed. Cell survival data from high LET protons are sparse and experiments with low energy protons to achieve high LET values are therefore required. The aim of this study was to quantify LET distributions from a low energy proton beam by using Monte Carlo (MC) simulations, and to further compare to a proton beam representing a typical minimum energy available at clinical facilities.
MATERIALS AND METHODS: A Markus ionization chamber and Gafchromic films were employed in dose measurements in the proton beam at Oslo Cyclotron Laboratory. Dose profiles were also calculated using the FLUKA MC code, with the MC beam parameters optimized based on comparisons with the measurements. LET spectra and dose-averaged LET (LETd) were then estimated in FLUKA, and compared with LET calculated from an 80 MeV proton beam.
RESULTS: The initial proton energy was determined to be 15.5 MeV, with a Gaussian energy distribution of 0.2% full width at half maximum (FWHM) and a Gaussian lateral spread of 2 mm FWHM. The LETd increased with depth, from approximately 5 keV/μm in the entrance to approximately 40 keV/μm in the distal dose fall-off. The LETd values were considerably higher and the LET spectra were much narrower than the corresponding spectra from the 80 MeV beam.
CONCLUSIONS: MC simulations accurately modeled the dose distribution from the proton beam and could be used to estimate the LET at any position in the setup. The setup can be used to study the RBE for protons at high LETd, which is not achievable in clinical proton therapy facilities.

PMID: 28464743 [PubMed - in process]



http://ift.tt/2qCDZKk

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου