Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 24 Μαΐου 2017

The expression of sialyltransferases is regulated by the bioavailability and biosynthesis of sialic acids

1-s2.0-S1567133X16X00075-cov150h.gif

Publication date: January 2017
Source:Gene Expression Patterns, Volumes 23–24
Author(s): Kaya Bork, Wenke Weidemann, Beatrice Berneck, Magdalena Kuchta, Dorit Bennmann, Annett Thate, Otmar Huber, Vinayaga S. Gnanapragassam, Rüdiger Horstkorte
Glycosylation is the most frequent and important post-translational modification of proteins. It occurs on specific consensus sequences but the final structure of a particular glycan is not coded on the DNA, rather it depends on the expression of the required enzymes and the availability of substrates (activated monosaccharides). Sialic acid (Sia) is the terminal monosaccharide of most glycoproteins or glycolipids (= glycoconjugates) and involved in a variety of function on molecular (e.g. determination of protein stability and half-life) and cellular level (e.g. influenza infection). Sia are synthesized in the cytosol from UDP-GlcNAc by the Roseman-Warren pathway. The key enzyme of this pathway is the UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sia are transferred on glycoconjugates by a family of Golgi-located enzymes, so called sialyltransferases (ST). There are 20 (human) ST known, which all transfer CMP-activated Sia to specific acceptor-sites on glycoconjugates. The regulation of the expression of ST is still not understood. Using a GNE-deficient embryonic stem cell line, which cannot synthesize Sia endogenously and by supplementation of soluble Sia precursors, we present data that the cellular availability of Sia strongly regulates the expression of ST on the level of transcription. In summary, we suggest that the concentration of the donor substrate of sialyltransferases, which can be regarded as a sensor for the environmental conditions of a cell, regulates not only total sialylation, but also the quality of sialylation. This allows a cell to response to altered environmental conditions.



http://ift.tt/2rj4zLT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου