Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 23 Ιουνίου 2017

Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix

S00039969.gif

Publication date: October 2017
Source:Archives of Oral Biology, Volume 82
Author(s): Cristina de Mattos Pimenta Vidal, Ariene Arcas Leme-Kraus, Momina Rahman, Ana Paula Farina, Ana K. Bedran-Russo
ObjectiveProteoglycans (PGs) are multifunctional biomacromolecules of the extracellular matrix of collagen-based tissues. In teeth, besides a pivotal regulatory role on dentin biomineralization, PGs provide mechanical support to the mineralized tissue and compressive strength to the biosystem. This study assessed enzymatic protocols for selective PGs removal from demineralized dentin to determine the roles of these biomacromolecules in the bulk mechanical properties and biostability of type I collagen.MethodsSelective removal of glycosaminoglycans chains (GAGs) and PGs from demineralized dentin was carried out by enzymatic digestion protocols using chondroitinase ABC (c-ABC) and trypsin (Try). A comprehensive study design included assessment of dentin matrix mass loss, biodegradability of the PGs/GAGs-depleted dentin matrix, ultimate tensile strength (UTS) and energy to fracture tests. Quantitative data was statistically analyzed by two-way and one-way ANOVA followed by the appropriate post hoc tests (α=0.05).ResultsTransmission electron microscopy images show effective GAGs removal by c-ABC and Try and both enzymatic methods released statistically similar amounts of GAGs from the demineralized dentin. Try digestion resulted in about 25% dentin matrix mass loss and increased susceptibility to collagenolytic digestion when compared to c-ABC (p=0.0224) and control (p=0.0901). Moreover, PGs digestion by Try decreased the tensile strengths of dentin. Statistically lower energy to fracture was observed in c-ABC-treated dentin matrix.ConclusionsGAGs plays a pivotal role on tissue mechanics and anisotropy, while the core protein of PGs have a protective role on matrix biostability.



http://ift.tt/2t1QO59

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου