Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Δευτέρα 17 Ιουλίου 2017

An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle

elsevier-non-solus.png

Publication date: August 2017
Source:Journal of Dairy Science, Volume 100, Issue 8
Author(s): T.K. Belay, B.S. Dagnachew, Z.M. Kowalski, T. Ådnøy
Fourier transform mid-infrared (FT-MIR) spectra of milk are commonly used for phenotyping of traits of interest through links developed between the traits and milk FT-MIR spectra. Predicted traits are then used in genetic analysis for ultimate phenotypic prediction using a single-trait mixed model that account for cows' circumstances at a given test day. Here, this approach is referred to as indirect prediction (IP). Alternatively, FT-MIR spectral variable can be kept multivariate in the form of factor scores in REML and BLUP analyses. These BLUP predictions, including phenotype (predicted factor scores), were converted to single-trait through calibration outputs; this method is referred to as direct prediction (DP). The main aim of this study was to verify whether mixed modeling of milk spectra in the form of factors scores (DP) gives better prediction of blood β-hydroxybutyrate (BHB) than the univariate approach (IP). Models to predict blood BHB from milk spectra were also developed. Two data sets that contained milk FT-MIR spectra and other information on Polish dairy cattle were used in this study. Data set 1 (n = 826) also contained BHB measured in blood samples, whereas data set 2 (n = 158,028) did not contain measured blood values. Part of data set 1 was used to calibrate a prediction model (n = 496) and the remaining part of data set 1 (n = 330) was used to validate the calibration models, as well as to evaluate the DP and IP approaches. Dimensions of FT-MIR spectra in data set 2 were reduced either into 5 or 10 factor scores (DP) or into a single trait (IP) with calibration outputs. The REML estimates for these factor scores were found using WOMBAT. The BLUP values and predicted BHB for observations in the validation set were computed using the REML estimates. Blood BHB predicted from milk FT-MIR spectra by both approaches were regressed on reference blood BHB that had not been used in the model development. Coefficients of determination in cross-validation for untransformed blood BHB were from 0.21 to 0.32, whereas that for the log-transformed BHB were from 0.31 to 0.38. The corresponding estimates in validation were from 0.29 to 0.37 and 0.21 to 0.43, respectively, for untransformed and logarithmic BHB. Contrary to expectation, slightly better predictions of BHB were found when univariate variance structure was used (IP) than when multivariate covariance structures were used (DP). Conclusive remarks on the importance of keeping spectral data in multivariate form for prediction of phenotypes may be found in data sets where the trait of interest has strong relationships with spectral variables.



http://ift.tt/2uu4ciK

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου