Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 7 Ιουλίου 2017

Epigallocatechin gallate has pleiotropic effects on transmembrane signaling by altering the embedding of transmembrane domains.

http:--highwire.stanford.edu-icons-exter Related Articles

Epigallocatechin gallate has pleiotropic effects on transmembrane signaling by altering the embedding of transmembrane domains.

J Biol Chem. 2017 Jun 16;292(24):9858-9864

Authors: Ye F, Yang C, Kim J, MacNevin CJ, Hahn KM, Park D, Ginsberg MH, Kim C

Abstract
Epigallocatechin gallate (EGCG) is the principal bioactive ingredient in green tea and has been reported to have many health benefits. EGCG influences multiple signal transduction pathways related to human diseases, including redox, inflammation, cell cycle, and cell adhesion pathways. However, the molecular mechanisms of these varying effects are unclear, limiting further development and utilization of EGCG as a pharmaceutical compound. Here, we examined the effect of EGCG on two representative transmembrane signaling receptors, integrinαIIbβ3 and epidermal growth factor receptor (EGFR). We report that EGCG inhibits talin-induced integrin αIIbβ3 activation, but it activates αIIbβ3 in the absence of talin both in a purified system and in cells. This apparent paradox was explained by the fact that the activation state of αIIbβ3 is tightly regulated by the topology of β3 transmembrane domain (TMD); increases or decreases in TMD embedding can activate integrins. Talin increases the embedding of integrin β3 TMD, resulting in integrin activation, whereas we observed here that EGCG decreases the embedding, thus opposing talin-induced integrin activation. In the absence of talin, EGCG decreases the TMD embedding, which can also disrupt the integrin α-β TMD interaction, leading to integrin activation. EGCG exhibited similar paradoxical behavior in EGFR signaling. EGCG alters the topology of EGFR TMD and activates the receptor in the absence of EGF, but inhibits EGF-induced EGFR activation. Thus, this widely ingested polyphenol exhibits pleiotropic effects on transmembrane signaling by modifying the topology of TMDs.

PMID: 28487468 [PubMed - indexed for MEDLINE]



http://ift.tt/2tx8hjy

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου