Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 15 Ιουλίου 2017

Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal

Publication date: 5 December 2017
Source:Applied Catalysis B: Environmental, Volume 218
Author(s): B. Barrocas, T.J. Entradas, C.D. Nunes, O.C. Monteiro
In this work, the synthesis of new nanocomposite materials, with enhanced optical and photocatalytic properties, was achieved through the combination of photoactive titanate nanofibers (TNF) with crystalline ZnS and Ag2S nanoparticles. The TNF powders were obtained via hydrothermal synthesis and afterwards modified with the semiconductor nanoparticles. The Ag2S and ZnS nanocrystallites were successfully grown onto the TNF surface, through a single-source precursor decomposition method, and ZnS-Ag2S/TNF nanocomposite materials with distinct layouts were produced. After structural, morphological and optical characterization, the samples' photocatalytic performance to hydroxyl radical production was evaluated using terephthalic acid as probe molecule. The nanocomposite powders were investigated for phenol removal, while the identification and the time profiles of some by-products formed during the phenol degradation were carefully analysed.Results suggest distinct photocatalytic pathways for the production of hydroxyl radical, as well as distinct phenol degradation mechanisms. The phenomenon was found to be dependent on the semiconductors layout. Ag2S(ZnS/TNF) was the sample with the best photocatalytic activity, in terms of phenol removal and also considering the amount of by-products formed and time required for their degradation. Based on the photocatalytic degradation results, two energetic mechanisms for Ag2S/TNF and Ag2S(ZnS/TNF) performance were proposed and discussed.

Graphical abstract

image


http://ift.tt/2tfo09Y

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου