Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Πέμπτη 31 Αυγούστου 2017

Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep learning model

S01650270.gif

Publication date: 1 November 2017
Source:Journal of Neuroscience Methods, Volume 291
Author(s): Tatsuhiko Naito, Yu Nagashima, Kenichiro Taira, Naohiro Uchio, Shoji Tsuji, Jun Shimizu
BackgroundThe morphometric analysis of myelinated nerve fibers of peripheral nerves in cross-sectional optical microscopic images is valuable. Several automated methods for nerve fiber identification and segmentation have been reported. This paper presents a new method that uses a deep learning model of a convolutional neural network (CNN). We tested it for human sural nerve biopsy images.MethodsThe method comprises four steps: normalization, clustering segmentation, myelinated nerve fiber identification, and clump splitting. A normalized sample image was separated into individual objects with clustering segmentation. Each object was applied to a CNN deep learning model that labeled myelinated nerve fibers as positive and other structures as negative. Only positives proceeded to the next step. For pretraining the model, 70,000 positive and negative data each from 39 samples were used. The accuracy of the proposed algorithm was evaluated using 10 samples that were not part of the training set. A P-value of <0.05 was considered statistically significant.ResultsThe total true-positive rate (TPR) for the detection of myelinated fibers was 0.982, and the total false-positive rate was 0.016. The defined total area similarity (AS) and area overlap error of segmented myelin sheaths were 0.967 and 0.068, respectively. In all but one sample, there were no significant differences in estimated morphometric parameters obtained from our method and manual segmentation.Comparison with existing methodsThe TPR and AS were higher than those obtained using previous methods.ConclusionsHigh-performance automated identification and segmentation of myelinated nerve fibers were achieved using a deep learning model.



http://ift.tt/2iMOQ4o

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου