Publication date: 31 December 2017
Source:Science of The Total Environment, Volumes 607–608
Author(s): Angelina Montes, Mary A. Bisson, Joseph A. Gardella, Diana S. Aga
With the applications of engineered nanomaterials (ENMs) continually expanding and production quickly growing, residues of ENMs will end up in the environment at levels that may be harmful to non-target organisms. Many of the tunable properties that have made them desirable, such as type, size, charge, or coating, also contribute to the current difficulties in understanding the fate of ENMs in the environment. This review article focuses on studies that investigate plant-ENM interactions, including techniques used to study these interactions and documented plant responses due to the phytotoxic effects of ENMs. The many variables which can be altered for an experiment, such as type, size, and concentration of ENMs, make it difficult to formulate generalizations about the uptake mechanism involved, or to make an inference on the subcellular localization and distribution of the internalized ENMs in plant tissue. In order to avoid these challenges, studies can utilize a model organism such as Arabidopsis thaliana, and a combination of analytical techniques that can reveal complementary information in order to assess how the different experimental conditions influence the uptake and phytotoxicity of ENMs. This review presents recent studies regarding plant-ENM interactions employing Arabidopsis to demonstrate how the use of this model plant can advance our understanding of plant-ENM interactions and guide additional studies using other plant species. Overarching results suggest that more sensitive tests and consistency in experimental designs are needed to fully assess and understand the phytotoxic effects of ENMs in the environment.
Graphical abstract
http://ift.tt/2fim5LC
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου