AbstractBackground
Tenascin-C (TNC) is a highly conserved matricellular protein with a distinct expression pattern during development and disease. Remodeling of the left ventricle (LV) in response to pressure overload leads to the re-expression of the fetal gene program.
ObjectivesThe aim of this study was to investigate the function of TNC in cardiac hypertrophy in response to pressure overload.
MethodsPressure overload was induced in TNC knockout and wild-type mice by constricting their abdominal aorta or by infusion of angiotensin II. Echocardiography, immunostaining, flow cytometry, quantitative real-time polymerase chain reaction, and reciprocal bone marrow transplantation were used to evaluate the effect of TNC deficiency.
ResultsEchocardiographic analysis of pressure overloaded hearts revealed that all LV parameters (LV end-diastolic and -systolic dimensions, ejection fraction, and fractional shortening) deteriorated in TNC-deficient mice compared with their wild-type counterparts. Cardiomyocyte size and collagen accumulation were significantly greater in the absence of TNC. Mechanistically, TNC deficiency promoted rapid accumulation of the CCR2+/Ly6Chi monocyte/macrophage subset into the myocardium in response to pressure overload. Further, echocardiographic and immunohistochemical analyses of recipient hearts showed that expression of TNC in the bone marrow, but not the myocardium, protected the myocardium against excessive remodeling of the pressure-overloaded heart.
ConclusionsTNC deficiency further impaired cardiac function in response to pressure overload and exacerbated fibrosis by enhancing inflammation. In addition, expression of TNC in the bone marrow, but not the myocardium, protected the myocardium against excessive remodeling in response to mild pressure overload.
http://ift.tt/2wpGp5v
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου