Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 30 Σεπτεμβρίου 2017

Miniaturized QuEChERS based methodology for multiresidue determination of pesticides in odonate nymphs as ecosystem biomonitors

Publication date: 1 February 2018
Source:Talanta, Volume 178
Author(s): Florencia Jesús, Ricardo Hladki, Natalia Gérez, Natalia Besil, Silvina Niell, Grisel Fernández, Horacio Heinzen, María Verónica Cesio
The impacts of the modern, agrochemicals based agriculture that threatens the overall systems sustainability, need to be monitored and evaluated. Seeking for agroecosystems monitors, the present article focus in the occurrence and abundance of aquatic macroinvertebrates, that have been frequently used as bioindicators of water quality due to their relationship with land use. Some of these organisms are on the top of the food chain, where bioaccumulation and biomagnification processes can be observed, and they can turn into secondary pollution sources of systems and terrestrial organisms as well. Odonate nymphs, which belong to the functional group of predators, were selected for this study. A methodology to determine 73 pesticide residues in odonate nymphs by LC-MS/MS and GC-MS/MS was developed. A QuEChERS sample preparation strategy was adapted. As it is complex to obtain samples especially in disturbed ecosystems, the method was minimized to a sample size of 200mg of fresh nymphs. The method was validated and good recoveries (71–120%) with RSDs below 20% for the majority of the studied pesticides at least at two of the assayed levels 1, 10 and 50µgkg−1 were obtained. For 32 analytes the limit of quantitation was 1µgkg−1 and 10µgkg−1 for the others. The lineal range was observed between 1–100µgkg−1 in matrix-matched and solvent calibration curves for most of the assessed pesticides. LC-MS/MS matrix effects were evaluated, 40% of the analytes presented low or no signal suppression. Only flufenoxuron presented high matrix effects. The obtained methodology is adequate for pesticide multiresidue analysis in aquatic macroinvertebrates (odonates) aiming to contribute to the ecological state evaluation of freshwater ecosystems.

Graphical abstract

image


http://ift.tt/2yPtZkP

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου