Publication date: November 2017
Source:Acta Biomaterialia, Volume 63
Author(s): Meghan McGill, Jeannine M. Coburn, Benjamin P. Partlow, Xuan Mu, David L. Kaplan
Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications.Statement of SignificanceHydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods presented have applications for other materials with dityrosine crosslinks, which are found in nature as post-translational modificaitons, as well as in engineered matrices such as tyramine-substituted hyaluronic acid and recombinant resilin.
Graphical abstract
http://ift.tt/2goVc5X
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου