Publication date: 5 January 2018
Source:Materials & Design, Volume 137
Author(s): Wei Chen, Zaiwang Huang, Shuo Cao, Yan Pan, Mingda Huang, Qingmiao Hu, Ding Xu, Qiaoyan Sun, Lin Xiao, Jun Sun
Brittle ω-precipitates in bcc β-Ti alloys are well known to dramatically degrade material plasticity and even trigger macroscopic premature fracture, posing an obstacle for structural applications. The embrittlement mechanism is intimately related to dislocation pile-up at the ω/β interface that leads to stress concentration and undesirable failure. The underlying physics of improving ductility remains to be further uncovered. Here we report a new finding in β-Ti alloy single crystal micropillar compression that the plasticity can be substantially improved by means of increasing strain rate, while mechanical strength simultaneously exhibits striking "faster is stronger" fashion. The results reveal that the improvement of micropillar plasticity upon higher loading rate can be ascribed to the wider deformation band, in contrast to equivalents under quasi-static mode. The microscopic examination shows that cross slip induced by screw dislocations governs the plasticity improvement, which is further validated by crystallographic analysis and first principle energy landscape calculations. This "dynamic self-toughening" behavior advances our fundamental understanding to the plastic deformation mechanism of ω-precipitate contained bcc β-Ti alloys.
Graphical abstract
http://ift.tt/2yGInwh
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου