Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 24 Νοεμβρίου 2017

Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales

Publication date: 15 April 2018
Source:Science of The Total Environment, Volume 621
Author(s): Ping Wu, Pei-Xin Cui, Guo-Dong Fang, Yu Wang, Shen-Qiang Wang, Dong-Mei Zhou, Wei Zhang, Yu-Jun Wang
Zn deficiency is a critical problem for many crops and human populations worldwide. Soil biochar amendment has recently been promoted as a sustainable agricultural practice. However, its effect on the bioavailability of micronutrients (especially Zn) to crops has not been fully addressed. This study investigated the impact of long-term biochar application in soils on Zn bioavailability to rice and wheat, using field experiments, and batch sorption/desorption experiments, in combination with extended X-ray absorption fine structure spectroscopy (EXAFS). In field soils biochar amendment increased total Zn content, but significantly decreased CaCl2-extractable Zn concentrations. Intriguingly, the uptake of Zn to wheat and rice grains was decreased. At high biochar application rates of 124 and 270t/ha the Zn concentrations in wheat grains (36.6 and 37.5mg/kg) reached a deficient level, lower than the recommended concentration of 45mg/kg. The batch experiments showed that biochar application at a cumulative rate of 10.5, 15.8, 31.5, 124, and 270t/ha significantly increased soil pH and soil organic matter (SOM) content, resulting in greater sorption and lower desorption of Zn. The EXAFS results demonstrated that the main forms of sorbed Zn were outer-sphere Zn complexes, Zn-illite, Zn-kaolinite and Zn-OM. The proportion of Zn-OM increased with increasing biochar application rates, suggesting that higher SOM might be more effective in immobilizing Zn and thus decreasing the Zn bioavailability. These results on the microscopic and macroscopic scales improved our understanding of the Zn bioavailability to crops, and raised potential concerns on the Zn deficiency in agricultural soils with long-term biochar application.

Graphical abstract

image


http://ift.tt/2jW75W3

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου