Sodium-glucose cotransporter 2 inhibitor (SGLT2-i) effects on cardiac ischemia/reperfusion (I/R) injury are unclear. Unlike SGLT2-i, dipeptidyl peptidase 4 inhibitors (DPP4-i) have shown effective cardioprotection in cardiac I/R injury. We aimed to investigate whether SGLT2-i reduces myocardial dysfunction and myocardial injury to a greater extent than DPP4-i in obese-insulin resistant rats with/without cardiac I/R injury. The high fat (HF) diet induced obese-insulin resistant rats were divided into 4 groups and received the following treatments for 28 days: vehicle (HFV); vildagliptin at a dosage of 3 mg/kg/day (HFVil); dapagliflozin at a dosage of 1 mg/kg/day (HFDa); and combination drugs (HFDaVil). At the end, I/R injury was induced by a 30-minute left anterior descending coronary occlusion and 120-minute reperfusion. Dapagliflozin showed a greater efficacy than vildagliptin in improving the metabolic impairments, low frequency/high frequency (LF/HF) ratio, systolic blood pressure and left ventricular (LV) function in comparison to HFV rats. In cardiac I/R injury, Dapagliflozin had a greater efficacy than vildagiptin in decreasing mitochondrial DRP1, cleaved caspase 3, LV dysfunction and infarct size in comparison to HFV rats. However, the combined therapy showed the greatest efficacy in attenuating LV dysfunction, mitochondrial DRP1 and infarct size in comparison to HFV rats. In conclusion, dapagliflozin has a more pronounced effect than vildagliptin in obese-insulin resistant rats for the improvement of LV function. In rats with cardiac I/R injury, although dapagliflozin had a greater efficacy on cardioprotection than vildagliptin, the combined therapy exerted the highest cardioprotective effects potentially through reducing mitochondrial fission.
http://ift.tt/2hE99Br
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου