Related Articles |
Zinc chelation promotes streptokinase-induced thrombolysis in vitro.
Int J Physiol Pathophysiol Pharmacol. 2017;9(5):137-146
Authors: Wang Z, Yu X, Li YV
Abstract
Cardiovascular disorder occurs when a local blood clot obstructs an artery or a vein to its surround organs, causing related tissues to lose function and die. It is one of the leading causes of mortality and a major cause of disability. The effect of thrombolysis induced by injecting intravenous thrombolytic agents is critical for reducing tissue damages. Streptokinase (SK) is a widely used thrombolytic agent in the treatment of thromboembolism in the blood vessels. A high unit of streptokinase is used in thrombolytic therapies for thrombotic disorders and could improve tissue reperfusion. It is a potent plasminogen activator. However, safety concerns for the usage of a high unit of streptokinase have been raised for the hemorrhagic transformation. In the present study, we studied how zinc would affect streptokinase-induced thrombolysis in vitro, and proposed a strategy to improve streptokinase's effectiveness in promoting thrombolysis. The mice whole blood was used to form the blood clot in vitro by incubating with calcium at 37°C for 30 minutes. Streptokinase was used for inducing thrombolysis measured with the spectrophotometer. Zinc and its chelator, Ca-EDTA, were applied with streptokinase, respectively. Results showed that the co-application zinc inhibited the thrombolytic effect of streptokinase in a dose-dependent manner. Zinc chelator, Ca-EDTA, significantly increased the effect of streptokinase-induced thrombolysis. Our results suggest that zinc chelation improved the efficiency of streptokinase in thrombolysis. The results may have a significant clinical implication by potentially reducing the adverse effect of streptokinase application.
PMID: 29209450 [PubMed]
http://ift.tt/2k9hQ3D
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου