Abstract
Background
Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®).
Methods
C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination.
Results
Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment.
Conclusion
Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.
http://ift.tt/2D6E0vI
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου