Abstract
Aquatic organisms of inland waters are often subjected to a combination of stressors. Yet, few experiments assess mixed stress effects beyond a select group of standard model organisms. We studied the joint toxicity of reference toxicants and increased temperature on the turquoise killifish, Nothobranchius furzeri, a promising model for ecotoxicological research due to the species' short life cycle and the production of drought-resistant eggs. The acute sensitivity of the larval stage (2dph) to three compounds (cadmium, 3,4-dichloroaniline and chlorpyrifos) was tested in combination with a temperature increase of 4 °C, mimicking global warming. Dose-response relationships were used to calculate 96h-LC50 of 0.28 mg/L (24 °C) and 0.39 mg/L (28 °C) for cadmium, 96h-LC50 of 9.75 mg/L (24 °C) and 6.61 mg/L (28 °C) for 3,4-dichloroaniline and 96h-LC50 of 15.4 μg/L (24 °C) and 14.2 μg/L (28 °C) for chlorpyrifos. After 24 h of exposure, the toxicity of all tested compounds was exacerbated under increased temperature. Furthermore, the interaction effect of cadmium and temperature could be predicted by the stress addition model (SAM). This suggests the applicability of the model for fish and at the same time indicates that the model could be suitable to predict effects of temperature-toxicant interactions.
http://ift.tt/2noUMzv
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου