Abstract
Objectives
Craniofacial sutures are important growth sites for skull development and are sensitive to mechanical stress. In order to determine the role of bone resorption in stress-mediated sutural bone growth, midpalatal suture expansion was performed in mice receiving alendronate, an anti-resorptive bisphosphonate.
Materials and methods
The midpalatal sutures of 8-week-old C57BL/6 mice were expanded by orthodontic wires over the period of 2 weeks. Mice with maxillary expansion without drug treatment as well as untreated animals served as controls. Skulls were analyzed with micro-computed tomography (micro-CT), immunohistochemistry and histology.
Results
Maxillary expansion in mice without drug treatment resulted in an increase of TRAP-positive osteoclasts. In contrast, no increase in osteoclasts was observed in expanded sutures of mice with bisphosphonate treatment. Double calcein labeling demonstrated rapid bone formation on the oral edges of the expanded sutures in mice without bisphosphonate treatment. Less bone formation was observed in bisphosphonate-treated mice after expansion. Histology revealed that the sutural architecture was reestablished in expanded sutures of mice without bisphosphonate treatment. In contrast, the sutural architecture was disorganized and the cartilage had an irregular form, following expansion in bisphosphonate-treated mice. Finally, micro-CT imaging demonstrated that the total amount of maxillary expansion was significantly lower in mice with bisphosphonate treatment as compared to those of mice without drug treatment.
Conclusions
In conclusion, our results indicate that osteoclast-mediated bone resorption is needed for maxillary suture expansion and reorganization of sutural architecture.
Clinical significance
Orthodontic palatal expansion can be complicated in patients with inherited or drug-induced diseases of osteoclast dysfunction.
http://ift.tt/2FMDB3p
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου