Related Articles |
Viral E6/E7 oncogene and cellular hexokinase 2 expression in HPV-positive cancer cell lines.
Oncotarget. 2017 Dec 05;8(63):106342-106351
Authors: Hoppe-Seyler K, Honegger A, Bossler F, Sponagel J, Bulkescher J, Lohrey C, Hoppe-Seyler F
Abstract
Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. Cancer cells typically exhibit metabolic alterations which support their malignant growth. These include an enhanced rate of aerobic glycolysis ('Warburg effect') which in cancer cells is often linked to an increased expression of the rate-limiting glycolytic enzyme Hexokinase 2 (HK2). Intriguingly, recent studies indicate that the HPV E6/E7 oncogenes cause the metabolic reprogramming in HPV-positive cancer cells by directly upregulating HK2 expression. Notably, however, these results were obtained upon ectopic overexpression of E6/E7. Here, we investigated whether HK2 levels are affected by the endogenous E6/E7 amounts present in HPV-positive cancer cell lines. RNA interference analyses reveal that the sustained E6/E7 expression is critical to maintain HK2 expression levels in HeLa cells. Mechanistically, this effect is linked to the E6/E7-dependent upregulation of HK2-stimulatory MYC expression and the E6/E7-induced downregulation of the HK2-inhibitory micro(mi)RNA miR-143-3p. Importantly, however, a stimulatory effect of E6/E7 on HK2 expression was observed only in HeLa among a panel of 8 different HPV-positive cervical and head and neck cancer cell lines. Thus, whereas these results support the notion that E6/E7 can increase HK2 expression, they argue against the concept that the viral oncogenes, at endogenous expression levels, commonly induce the metabolic switch of HPV-positive cancer cells towards aerobic glycolysis by directly or indirectly stimulating HK2 expression.
PMID: 29290953 [PubMed]
http://ift.tt/2CCugK7
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου